skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Hao-Chung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the sample complexity of quantum hypothesis testing, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. We characterize the sample complexity of binary quantum hypothesis testing in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple quantum hypothesis testing. The final part of our paper outlines and reviews how sample complexity of quantum hypothesis testing is relevant to a broad swathe of research areas and can enhance understanding of many fundamental concepts, including quantum algorithms for simulation and search, quantum learning and classification, and foundations of quantum mechanics. As such, we view our paper as an invitation to researchers coming from different communities to study and contribute to the problem of sample complexity of quantum hypothesis testing, and we outline a number of open directions for future research. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026